`
datoplay
  • 浏览: 1620239 次
文章分类
社区版块
存档分类
最新评论

Bellman-Ford算法详讲

 
阅读更多

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。

这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德贝尔曼(RichardBellman,动态规划的提出者)和小莱斯特福特(LesterFord)发明。

适用条件&范围:

单源最短路径(从源点s到其它所有顶点v);

有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

边权可正可负(如有负权回路输出错误提示);

差分约束系统;

Bellman-Ford算法的流程如下:
给定图G(V,E)(其中VE分别为图G的顶点集与边集),源点s数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n],Distant[s]0

以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u,v),如果Distant[u]+w(u,v)<Distant[v],则另Distant[v]=Distant[u]+w(u,v)w(u,v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u,v),如果存在Distant[u]+w(u,v)<Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

BellmanFord算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1n1n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edgeuv)),判断是否存在这样情况:
dv>d(u)+w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。

之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则应为无法收敛而导致不能求出最短路径。

测试代码如下:(下面为有向图的Bellman-Ford算法。。。。。)


测试数据:

4 6 1
1 2 20
1 3 5
4 1 -200
2 4 4
4 2 4
3 4 2

和:

4 6 1
1 2 2
1 3 5
4 1 10
2 4 4
4 2 4
3 4 2


分享到:
评论

相关推荐

Global site tag (gtag.js) - Google Analytics